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Outline 

•  Supersonic Inlet modeling 

    -- Mixed Compression Inlet 

    -- External Compression Inlet 
 

•  Parallel Flow Path Modeling 
    -- Parallel Compressor Modeling 

 

•  Engine Control Schedules 

    --  Compressor Schedule 

    --  Exit Nozzle Area Schedule 
 

•  Nozzle Modeling 

 

• Variable Cycle Engine (VCE) Modeling 

 

•  Concluding Remarks/Future 
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Supersonic Inlets Modeling 

-  Started with Mixed Compression Supersonic inlets 

 

 

 

 

 

 

 

-  Now focusing on external compression axisymmetric Inlets 

   -- Better overall performance for Mach 1.8 or less 
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M1, P1, T1  

M2, P2, T2  

freestream 

- Isentropic compressible flow relations to model a system of oblique 

shocks (no dynamics assuming external dynamics are significantly 

faster than internal) 

 

External Compression Modeling 
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- Sufficient discretization of centerbody angle D when cowl lip conditions are not   

  changing 
 

- Shocks focusing at the cowl lip also verifies inlet geometry for designed condition 
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– Internal supersonic and subsonic compression – Quasi 1D 

CFD based on compressible Euler 

 

Continuity of 

     Mass   

 

    Momentum 

 

 

     Energy 

 

 

 

Internal Compression Modeling  
Supersonic & Subsonic Diffusers    

  

Overall CFD 

Equation 
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Mixed Compression Inlets Modeling - Results 

- New model (NOIMA) verified against legacy code named  

  LAPIN, which was verified with testing 

   -- LAPIN written in FORTRAN (~ 80 routines), based on method of  

       characteristics  

NOIMA 

- New model can be used for controls design to increase   

   performance and for propulsion and APSE integration 
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External Compression Inlet Modeling - Approach 

7 7 

Computational Domain 
A. 1-D compressible flow cells w/ dynamics and 

averaging flows at shock boundary 

B. Quasi 1-D CFD compressible flow cells w/ leakage 

fluxes estimation 

C. Quasi 1-D CFD compressible flow cells 

 

A-B. Moving computational domains 
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External Compression Inlet Modeling – Challenges 

Challenges  
–  Developing generalized formulations for conservation flux  

    leakages across sonic boundary – Method hasn’t worked yet 

   

–  Sensing the shock position to switch between compressible  

    flow cells and quasi 1D CFD cells – Moving Domain 

 

–  Determined mass flow leakage based on test data for various   

    engine face back pressures to calculate leakage fluxes –  

    Approach worked but is not generalized 

 

 –  Remaining issue for inlet dynamics Conical  

    compressible flow field inherently 2D and  

    3D for pitch variations  
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Results – Ramping the Back Pressure 
Back Pressure (N/m2) vs. Time (sec) 

Upstream Shock Position (cell #) vs. Time 

(sec) 

Shock Thickness (Cell) vs. Time (sec) 

9 
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External Compression Inlet Results  
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Test Data 
Simulation 

Pressure profile by ramping back pressure Comparing test and Simulation Results 

Difference In Shock Position 

Back Pressure 
(N/m2) 

Test Data Shock Position 
(Cell) 

Simulation Shock Position 
(Cell) 

109690 41 42 

117930 32 34-35 

122820 26 28 
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Parallel Compressor Modeling 

Objective 

  
–  Develop parallel flow path models of propulsion components to study effect 

of distortion on propulsion system dynamics and APSE 

 

–  First step in the process: develop compressor model with parallel flow paths 
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• New model derived in 

cylindrical coordinates - Euler 

 

• Allows modeling of disturbance 

from changing flight conditions 

(pitch, yaw, roll, etc)  

• Inlet conditions of Pressure, 

Temperature & outlet 

conditions of mass flow rate 

 

• Path ratio of      - adjusting 

mass flow rate of stage 

maps by path ratio 

Overview 

i 
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Conservation Dynamics in 2D Cylindrical Coordinates 
   Equations were derived in cylindrical coordinates for compressible & 

inviscid flow, assuming flow properties do not vary in the radial direction 

 

   

Conservation Equations 
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Parallel Compressor Modeling Approach 



National Aeronautics and Space Administration 

www.nasa.gov 14 

Parallel Compressor Modeling Approach 

Continuity: 

 

Energy: 

 

Mixing Volume Equations 

Momentum: 

 

Mixing volume - weighted average of pressure, temperature outputs from 

compressor stages 
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• Pressure disturbance moves Path 1, Path 3 operating points to surge line 

 

• Would experience cascading stall if mass flow rate was not held constant  

  (as with engine) 

 

• Pressure distortion of  approximately 0.1%  

     applied to path 1 
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Parallel Compressor Modeling Results 
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•  Square wave distortion applied to compressor input, path 1  

Parallel Compressor Modeling Results 
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•  Pulsating effect of rotational velocity from one stage to the 

next  
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Parallel Compressor Modeling Results 

•  Distortion with shorter duration applied (larger amplitude about 0.2%) 

•  Different disturbance frequencies produce different distortion patterns  

   (different frequency domain response) 
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Engine Operating Schedules 

• Prior (2009 WS) compressor operating schedule derivation approach 

developed for full speed envelope operation – used generic maps 

     -- Developed a bleed schedule – Info on Inlet Guide Vane (IGV) not available 

     -- First derived schedule utilizing isolated compressor model 

     -- Integrated w/ engine: could not maintain original operating line &  

         turbine unchoked  – compressor/turbine performance not exactly matched. 

     -- Corrected by rescaling turbine maps    

Operating 

Region 

Turbine PR map 
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Engine Speed (100% to 60%)  
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Exit Nozzle Area Schedule 
• Developed exit nozzle area schedule approach – Objective to fully expand 

flow at nozzle exit 

     --  Approach based on PR vs. Cd (flow discharge coefficient) schedule &  

         area limit vs. speed 

     --  Creates feedback system w/ instabilities – Designed Notch filters to  

          stabilize system 

     --   System sensitive to unmatched compressor/turbine  – required rescaling 
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Nozzle Modeling 
Objective/Approach 
•  Develop 1D CFD model for exit nozzles for thrust dynamics (before used 

nozzle lump volume and chocked compressible flow function)  

    -- Chosen method: MacCormack’s predictor-corrector technique assuming  

        subsonic-supersonic isentropic nozzle flow 

 

•  Step one - develop model for generic Convergent-Divergent (CD) nozzle  

   geometry 

 

•  Step two – develop model for more complex supersonic engine- 

   nozzle concept geometry  

 

 CD 

D 

CD 

CD 

External Bypass 

Main Bypass 

Core Flow 

Core + Main B. 
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Nozzle Modeling 
Converging-

Diverging Nozzle 

 

• Throat and Exit Areas used 
from N+3 engine simulation 

 

• Used simple shape profile –
actual N+3 nozzle profile not 
known 

 

• Implemented MacCormack’s 
method - variable area to be 
implemented in formulations 

 

• Some 2D may need to be done 

 

• For propulsion system exit 
nozzle area schedules need to 
be developed 
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CFD Method- Predictor Step 
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Results 

(so far steady state – no freq responses) 
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•  Generic model verified against  

    results reported in literature 
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Variable Cycle Engine Model 

•  Dual Spool variable cycle – High bypass at low altitudes to low bypass high  

    altitudes 

 

•  Noise abatement for overland flight 

   -- Through external bypass & through nozzle design 

 

•  Cycle analysis conducted in NPSS – provided geometries and component   

    performance characteristics for dynamic model 

external bypass 

 core flow 

main bypass 
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Variable Cycle Engine Model Components 
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Performance  

characteristics (maps) 
Volume Dynamics 

27 

Component Modeling - Roadmap & Approach 

          Continuity of mass, momentum & energy 

 

1. Original component models 
developed based on J85-13 engine 

 

2. Many of J85-13 component models 
directly utilized for VCE w/ the 
appropriate maps and geometries  

 

3. Some new component models 
developed (ducts, mixers, splinters, 
dual core)  - VCE V.1 

 

4. For some components need to 
develop detailed models – like 
CFD for inlet & nozzles  

 

5. Need to develop fully operational 
engine (control schedules) – 
Methodology developed w/ J85-13 

 

6. Parallel flow paths for distortion & 
boundary layer effects 

 

7. Propulsion & ASE integration – 
Interfaces and controls 

 
 

 

Development Roadmap 
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speed response

speed command
~ 0.02s for  

63% resp. 

Initial objective is VCE model development 

•  Control design effort light; hold model together 

    --  But designed for higher bandwidth controls for  

         disturbance attenuation 

  

•  Engine has higher response capability of ~ 70  

    rad/sec on high side (~40 rad/sec typically used) 

 

•  Potential to use higher response capability to design  

   for better disturbance attenuation, safety margins,   

   and engine efficiency  

VCE Engine Results 
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•  Nominal VCE propulsion system thrust  

    44,100 N or 9,914 lbf 

 

•  A 1% change in fan speed causes  

   2.9% change in thrust 

 

•  Thrust response more underdamped – design  

    of speed controller also needs to consider  

    thrust response 

     

VCE Engine Speed and Thrust 
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VCE Engine Atmospheric Disturbance and Thrust 

Thrust response w/ Atmospheric 

Disturbance  

With no external compression inlet & no 

1D CFD for nozzles 
 

•  Case 1; eddy dissipation rate 4x 

average of North Atlantic cruise altitudes; 

integral length scale typical (equivalent 

to atmospheric turbulence patch size of ~ 

11 km); max locally dissipating wind 

speeds 80 mph 

   -- Results in thrust variations up to ~  

       5000 N or 1124 lb 

 

•  Case 2; eddy dissipation rate worst 

recorded; integral length scale typical; 

max dissipating wind speeds 150 mph 

   -- Results in thrust variation up to ~  

       9000N or 2024lb 
 

     

Case 1 

Case 2 
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Variable Cycle Propulsion System Studies 
 

Preliminary - Thrust Spectral for Coupling to AeroServoElastic (ASE) Modes    

 

 • Study based on V1. initial  

  variable cycle engine  

  modeling 

 

 

•  Atmospheric turbulence  

   model w/ eddy dissipation   

   rates & momentary wind  

   gusts up to 180 mph 

 

 

•  Study shows potentially  

   significant trust dynamics  

   to warrant detailed APSE  

   modeling and analysis  
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Future 
 

• Develop complete integrated propulsion system variable cycle 
engine dynamic models and control designs 

• Develop Integrated APSE system models, integrated vehicle 
controls, and conduct APSE studies 

• Close integration between NPSS and APSE (already started) 

 

Additional Possibilities of this Research 

• Integrate w/ NPSS to develop a complete cycle deck design 
and verification package and controls development 
platform/Rig 

 

• With gas dynamic model explore higher bandwidth controls to 
reduce stall margins and improve efficiency and design 
advanced controls to improve flight safety and operability 

 

   

 

 


